

1. What is Varistor

Definition

Varistor is variable resistance device which changes with the applied voltage.

Features

■ Main composition

• Ceramic material : ZnO + additives • Internal Electrode : Pd, Ag-Pd, etc.

■ Semi-conductive property

- It is a insulator under a certain voltage level but the varistor becomes a low ohmic conductor within 0.5 ns for the duration of the over-voltage.
- In communications equipment and systems for data transmission, it thus offers perfect protection by clamping the over-voltage to a safe level.

Application

- IC and Transistor Protection
- Telecommunication Transient Protection
- LCD Module Protection Circuit
- USB, IEEE 1394 data line protection
- Protection Circuit Module [Li ion and Li Polymer 2nd Battery], etc.

Fig. 1 Chip varistor structure

2. Technical Information on Varistor

Working Voltage (Vw)

- The maximum continuous DC working voltage which may be applied up to the maximum operating temperature of the Varistor.
- The reference voltage for measurement of leakage current
- It is always less than the breakdown voltage.

Breakdown Voltage (VB)

- This is the voltage across the Varistor when drawing a DC current of 1mA and this voltage has a specific range [min. & max.].
- It is this point that is notionally the start of the region of normal operation.

Capacitance (C_P)

- Specified 1MHz [or 1kHz] and 0.5~1Vrms.
- For using protection of high speed data lines, the capacitance should generally be kept low or within a defined range. Excessive capacitance on the signal line could have an undesired effect on the signal.
 - * Low Cp: a part of a low-pass filter needed in high speed data lines
 - * Defined Cp: Replace a capacitor for filtering purposes at I/O ports
 - * High Cp: For noise suppression

Fig. 3 Insertion loss of frequency with Cp of varistor

Clamping Voltage [Vc]

- The Clamping Voltage of a Varistor is the peak voltage appearing across the device when measured under the conditions of a specified pulse current and a specified waveform $[8\mu s/20\mu s]$.
- $8\mu s$ [Ts] is the time taken for the current pulse to rise from 10% of its peak value to 90% of its peak value.
- $20 \mu s$ [Tr] is the time taken to decay to 50% of its peak value; this is measured from the time of pulse initiation.

Surge(Peak) Current [IP]

- The maximum peak current which may be applied for a $8\mu s/20\mu s$ impulse, with rated line voltage also applied, without causing device failure.
- The pulse can be applied to the device in either polarity with the same confidence factor.

• The maximum rated transient energy which may be dissipated for single current pulse at a specified impulse duration $[10\mu\text{s}/1000\mu\text{s}]$, with rated DC or RMS voltage applied, without causing device failure.

O1: Virtual Origin of Wave

t: Time from 10% to 90% of Peak

t1: Virtual Front Time t1=1.25×t

t2: Virtual Time to Half Value [Impulse Duration]

Item	Waveform	t1	t2
VC	8/20 µs	8 μs	20 μs
IP	8/20 μs	8 μs	20 μs
ET	10/1000 μs	10 μs	1000 μs

Fig. 4 Waveform for Vc, IP, ET

ESD [Electrostatic discharge]

- ESD is a high voltage transient with fast rise time $[0.7\sim1.0ns]$ and fast decay time [max. 60ns]
- For protection the circuit or IC from ESD, the protective device should have a fast enough response time to clamp ESD peak
- ESD protection capability depends on a kind of devices and ceramic composition in chip varistor

Fig. 6 Waveform % rising time of ESD in IEC1000-4-2

Fig. 5 Circuit break-down by ESD

Fig. 7 Output voltage peak w/, w/o chip varistor on ESD

- ESD protection capability; ZnO-Pr based & ZnO-Bi based Chip Varistor
 - * Comparative product: 1608 18Vw, 120pF
 - * Joinset chip varistor : ZnO-Pr based ceramic composition
 - * ZnO-Bi2O3 based chip varistors is not available in protecting the electronic circuit from ESD over 5kV
 - * Test condition: contact discharge with ESD waveform in IEC1000-4-2 method

Fig. 8 Varistor voltage & leakage current deviation with ESD

V-I Characteristics

How to play in Circuit

When the rated voltage, which is needed to drive the system or component, may be applied in an electronic circuit, a AC or DC input current flows through components or systems because varistor have high impedance.

Steady State: Varistor ⇒ High Impedance [The region below working voltage]

In case that it will be applied over-voltage through the input, Varistor will be change to a conductor with low impedance.

The input current flows through the varistor to the ground, so components or systems can be protected.

Protective State: Varistor Y Low Impedance [The region over Varistor voltage]

Input

Multilayer Chip Varistor

System or Component to be protected from ESD and Surge Current

3. How to Select the adequate Varistor

Step 1

A: Varistor Voltage (VB)

- It is determined by max. voltage in a circuit
- In the case of normal operation, it must be selected to not affect the circuit
- Varistor and circuit voltage

 $V_{IN(DC)} \le V_{1mA,min.} \times 0.9$; $V_{IN(DC)} \le V_W$

- * $V_{IN(DC)}$: high limit of input voltage in circuit
- * V_{1mA,min}: minimum value of V₁mA
- * Vw : working voltage of Varistor

B: Fix the ESD and Surge current of Circuit

• wave form, frequency, time, etc.

C: Transient Energy (Ет)

• It can be expressed as following.

 $E = K \times I_P \times V_P \times t_1[J]$

- * K: Integer value according to surge wave form (Waveform 8/20us, 10/1000us, K=1.43)
- * Ip: Surge currnt
- * VP: Limit voltage with IP
- * t1 : Duration time of Surge current
- Energy of Varistor ≥ max. energy of circuit

D: Clamping Voltage (Vc)

- Voltage which is applied with a specified surge (8/20us, 1A or 2A)
- Vc ≤ Endurance voltage of circuit

4. Advantage of Joinset's Varistor

Excellent properties of circuit protection against an electrostatic discharge, ESD

- No degradation of electrical properties of chip varistor although high ESD voltage is repeatedly applied.
 - * Low leakage current, IL & stable variation of breakdown voltage, $\triangle V_B$
 - * IEC 1000-4-2 LEVEL 4 [contact discharge 8kV, air discharge 15kV, withstand 1000 times]
- Useful device to protect from ESD in mobile communication unit, etc.

High environmental reliability

- High resistance against thermal shock, humidity, solvent, etc.
- It is due to our original manufacturing processes such as polymer coating on ceramic body, raw material composition, electrolyte plating technique and precision line control.

Green product

- The harmful objects in product are controlled below 100ppm [EU RoSH regulations satisfied]
 - * Pb: <50ppm, Cd: <5ppm
- Lead free solder plating

Application

1. ASIC Reset & Vcc Protection Circuit

2. I/O Port Protection

3. Keyboard

4. Audio Circuit

5. LCD Protection Circuit

6. Protection Circuit Module

• Li ion and Li Polymer Rechargeable Battery Application

